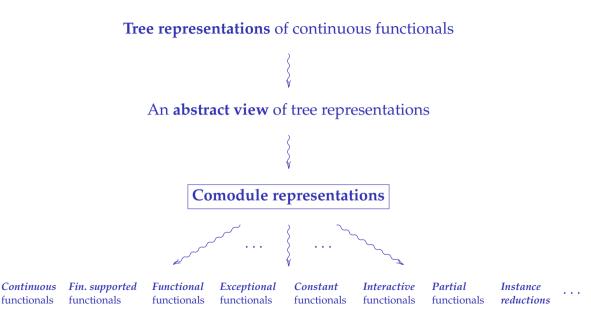
Comodule Representations of Second-Order Functionals

Danel Ahman (University of Tartu, Estonia) Andrej Bauer (University of Ljubljana, Slovenia)

TYPES 2024

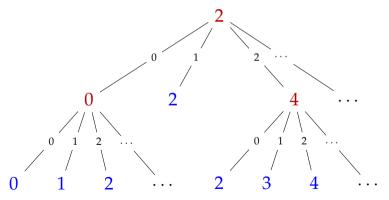
10–14 June 2024



• Consider
$$F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$$
, say $F(h) = h(2 \cdot h(2)) + h(2)$

• Consider $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, say $F(h) = h(2 \cdot h(2)) + h(2)$

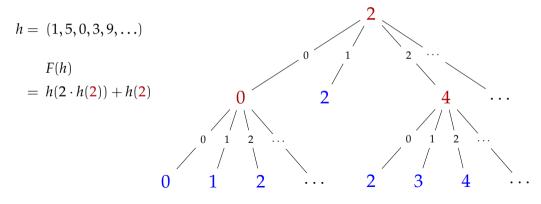
► A *tree representation* of *F*:



(a N-labelled, N-branching, N-leaved well-founded tree)

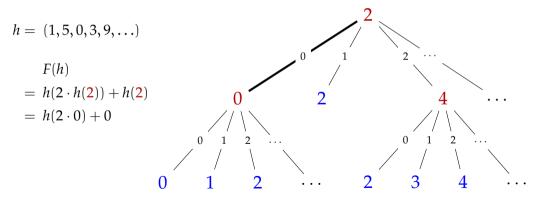
• Consider $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, say $F(h) = h(2 \cdot h(2)) + h(2)$

► A *tree representation* of *F*:



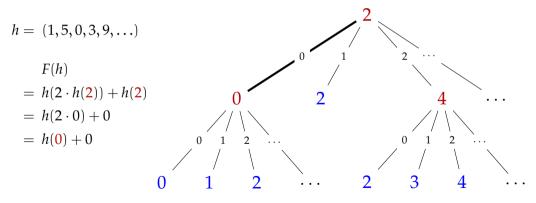
• Consider $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, say $F(h) = h(2 \cdot h(2)) + h(2)$

► A *tree representation* of *F*:



• Consider $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, say $F(h) = h(2 \cdot h(2)) + h(2)$

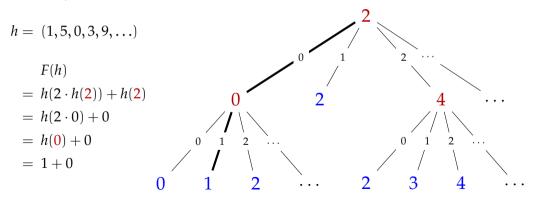
► A *tree representation* of *F*:



(a N-labelled, N-branching, N-leaved well-founded tree)

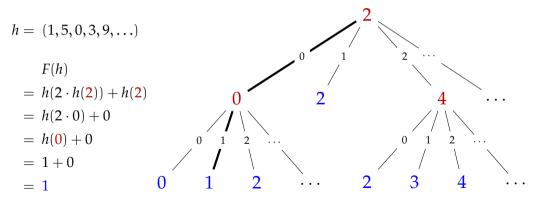
• Consider $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, say $F(h) = h(2 \cdot h(2)) + h(2)$

► A *tree representation* of *F*:



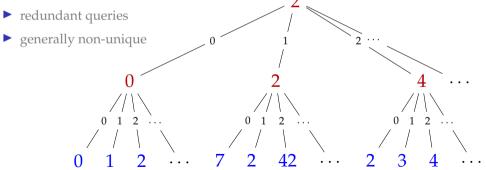
• Consider $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, say $F(h) = h(2 \cdot h(2)) + h(2)$

► A *tree representation* of *F*:



• Consider $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, say $F(h) = h(2 \cdot h(2)) + h(2)$

- ► Another tree representation of F:
 - duplicated query on 2



An **abstract view** of tree representations

An abstract view of tree representations: trees

- Given A : **Type** and $P : A \rightarrow$ **Type**
- ► *Type of trees*: inductively define Tree(*A*, *P*) by

 $\frac{a:A \qquad ts:Pa \rightarrow \mathsf{Tree}(A,P)}{\mathsf{node}(a,ts):\mathsf{Tree}(A,P)}$

(A-labelled, P-branching wf. trees with unlabelled leaves)

An abstract view of tree representations: trees and paths

- Given A : **Type** and $P : A \rightarrow$ **Type**
- **Type of trees**: inductively define Tree(A, P) by

a: A $ts: Pa \rightarrow \text{Tree}(A, P)$ leaf : Tree(A, P) node(a, ts) : Tree(A, P)

(A-labelled, P-branching wf. trees with **unlabelled leaves**)

Type of paths: given t: Tree(A, P), inductively define Path_{A,P}(t) by

p: Pa $\vec{p}: \operatorname{Path}_{A,P}(ts p)$ stop : Path_{A P}(leaf)

 $step(p, \vec{p}) : Path_{A,P}(node(a, ts))$

(paths from root to leaves)

An abstract view of tree representations: computing a path

Given

$$h: \prod_{a:A} Pa$$
 and $t: \operatorname{Tree}(A, P)$

we can recursively *compute a path* $c_{A,P} h t$: Path_{*A*,*P*}(*t*) by

$$\begin{array}{ll} \mathbf{c}_{A,P} \, h \, \text{leaf} & \stackrel{\text{def}}{=} & \text{stop} \\ \mathbf{c}_{A,P} \, h \, (\text{node}(a,t)) & \stackrel{\text{def}}{=} & \text{step} \big(h \, a, \mathbf{c}_{A,P} \, h \, (t \, (h \, a)) \big) \end{array}$$

This defines a map

$$\mathsf{c}_{A,P}: \left(\prod_{a:A} P a\right) \to \prod_{t:\mathsf{Tree}(A,P)} \mathsf{Path}_{A,P}(t)$$

An abstract view of tree representations: tree representations

• A *tree representation* of a (continuous) functional

$$F: \left(\prod_{a:A} P a\right) \to \left(\prod_{b:B} Q b\right)$$

consists of

An abstract view of tree representations: tree representations

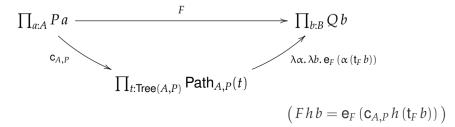
A *tree representation* of a (continuous) functional

$$F: (\prod_{a:A} P a) \to (\prod_{b:B} Q b)$$

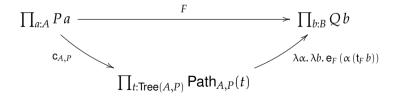
consists of maps

$$\mathfrak{t}_F: B \to \mathsf{Tree}(A, P)$$
 and $\mathfrak{e}_F: \prod_{\{b:B\}} \mathsf{Path}_{A,P}(\mathfrak{t}_F b) \to Q b$

such that the following diagram commutes:



Can this situation be captured even more abstractly?



Capturing tree representations more abstractly: containers

- A *container* $A \lhd P$ is given by:
 - ▶ a type *A* of *shapes*, and
 - a family $P : A \rightarrow \mathbf{Type}$ of *positions*
- Examples:
 - ► *Lists:* $\mathbb{N} \lhd \lambda n. \{0, 1, ..., n-1\}$
 - *Trees:* $Tree(A, P) \lhd \lambda t$. Path_{A,P}(t)

Capturing tree representations more abstractly: containers

• A *container* $A \lhd P$ is given by:

▶ a type *A* of *shapes*, and

• a family $P : A \rightarrow \mathbf{Type}$ of *positions*

► Examples:

- *Lists:* $\mathbb{N} \lhd \lambda n. \{0, 1, ..., n-1\}$
- *Trees:* $Tree(A, P) \lhd \lambda t$. $Path_{A,P}(t)$

• A *container morphism* $f \lhd g : (A \lhd P) \rightarrow (B \lhd Q)$ is given by

 $f: A \to B$ and $g: \prod_{\{a:A\}} Q(fa) \to Pa$

Capturing tree representations more abstractly: containers

- A *container* $A \lhd P$ is given by:
 - ▶ a type *A* of *shapes*, and
 - a family $P : A \rightarrow \mathbf{Type}$ of *positions*
- ► Examples:
 - *Lists:* $\mathbb{N} \lhd \lambda n. \{0, 1, ..., n-1\}$
 - *Trees:* $Tree(A, P) \lhd \lambda t$. $Path_{A,P}(t)$
- A *container morphism* $f \lhd g : (A \lhd P) \rightarrow (B \lhd Q)$ is given by

$$f: A \to B$$
 and $g: \prod_{\{a:A\}} Q(fa) \to Pa$

Containers and their morphisms form a category Cont

Capturing tree representations more abstractly: cointerp. of conts.

▶ Define the *functor*¹
$$\langle\!\langle - \rangle\!\rangle$$
 : **Cont**^{op} \rightarrow **Type** as

 $\langle\!\langle A \lhd P \rangle\!\rangle \stackrel{\text{def}}{=} \prod_{a:A} P a$ and $\langle\!\langle f \lhd g \rangle\!\rangle \stackrel{\text{def}}{=} \lambda \alpha. \lambda b. g \left(\alpha \left(f \, b \right) \right)$

where $f \lhd g : (B \lhd Q) \rightarrow (A \lhd P)$

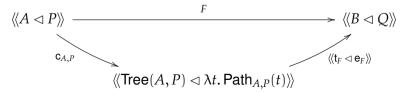
¹It arises from the *cointerpretation of containers* [A., Uustalu '14], given by $X \mapsto \prod_{a:A} (Pa \times X)$

Capturing tree representations more abstractly: cointerp. of conts.

▶ Define the *functor*¹
$$\langle\!\langle - \rangle\!\rangle$$
 : **Cont**^{op} \rightarrow **Type** as

 $\langle\!\langle A \lhd P \rangle\!\rangle \stackrel{\text{def}}{=} \prod_{a:A} P a$ and $\langle\!\langle f \lhd g \rangle\!\rangle \stackrel{\text{def}}{=} \lambda \alpha. \lambda b. g \left(\alpha \left(f b\right)\right)$ where $f \lhd g : (B \lhd Q) \rightarrow (A \lhd P)$

• A tree representation of $F : (\prod_{a:A} Pa) \to (\prod_{b:B} Qb)$ may be thus *rewritten* as:



¹It arises from the *cointerpretation of containers* [A., Uustalu '14], given by $X \mapsto \prod_{a:A} (Pa \times X)$

Capturing tree representations more abstractly: tree monad

• The *tree monad* (\mathcal{T}, η, μ) on containers:

$$\mathcal{T}(A \lhd P) \stackrel{\text{def}}{=} \operatorname{Tree}(A, P) \lhd \lambda t. \operatorname{Path}_{A,P}(t),$$
$$\eta_{A \lhd P} \stackrel{\text{def}}{=} (\lambda a. \operatorname{node}(a, \lambda p. \operatorname{leaf})) \lhd (\lambda \{a\}. \lambda(\operatorname{step}(p, \operatorname{stop})). p)$$
$$\mu_{A \lhd P} \stackrel{\text{def}}{=} \cdots$$

• More abstractly: $\mathcal{T}(A \lhd P) \cong \mathbf{lfp}(X \lhd Y)$. $\mathbf{ld^c} + ^{\mathbf{c}} (A \lhd P) \circ^{\mathbf{c}} (X \lhd Y)$

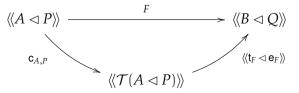
Capturing tree representations more abstractly: tree monad

• The *tree monad* (\mathcal{T}, η, μ) on containers:

$$\mathcal{T}(A \lhd P) \stackrel{\text{def}}{=} \operatorname{Tree}(A, P) \lhd \lambda t. \operatorname{Path}_{A, P}(t),$$
$$\eta_{A \lhd P} \stackrel{\text{def}}{=} (\lambda a. \operatorname{node}(a, \lambda p. \operatorname{leaf})) \lhd (\lambda \{a\}. \lambda(\operatorname{step}(p, \operatorname{stop})). p)$$
$$\mu_{A \lhd P} \stackrel{\text{def}}{=} \cdots$$

• More abstractly: $\mathcal{T}(A \lhd P) \cong \mathbf{lfp}(X \lhd Y)$. $\mathbf{ld^c} + ^{\mathbf{c}} (A \lhd P) \circ^{\mathbf{c}} (X \lhd Y)$

• A tree representation of *F* may be thus *further rewritten* as:



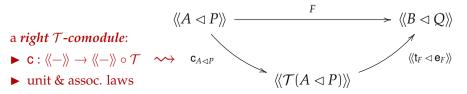
Capturing tree representations more abstractly: comodule

• The *tree monad* (\mathcal{T}, η, μ) on containers:

$$\mathcal{T}(A \lhd P) \stackrel{\text{def}}{=} \operatorname{Tree}(A, P) \lhd \lambda t. \operatorname{Path}_{A, P}(t),$$
$$\eta_{A \lhd P} \stackrel{\text{def}}{=} (\lambda a. \operatorname{node}(a, \lambda p. \operatorname{leaf})) \lhd (\lambda \{a\}. \lambda(\operatorname{step}(p, \operatorname{stop})). p)$$
$$\mu_{A \lhd P} \stackrel{\text{def}}{=} \cdots$$

• More abstractly: $\mathcal{T}(A \lhd P) \cong \mathbf{lfp}(X \lhd Y)$. $\mathbf{ld^c} + ^{\mathbf{c}} (A \lhd P) \circ^{\mathbf{c}} (X \lhd Y)$

• A tree representation of *F* may be thus *further rewritten* as:



Capturing tree representations more abstractly: comodule reprs.

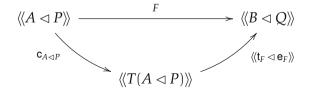
• Given a *monad* (T, η, μ) on **Cont** and a *right T-comodule* $(\langle\!\langle - \rangle\!\rangle, c)$, a functional

$$F: \left(\prod_{a:A} P a\right) \to \left(\prod_{b:B} Q b\right)$$

is $(T, \langle\!\langle - \rangle\!\rangle, c)$ -*representable* if there exists a morphism in **Cont**_{*T*}

$$\mathbf{t}_F \lhd \mathbf{e}_F : (B \lhd Q) \to T(A \lhd P)$$

such that



Capturing tree representations more abstractly: comodule reprs.

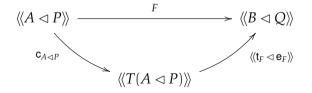
• Given a *monad* (T, η, μ) on **Cont** and a *right T-comodule* $(\langle\!\langle - \rangle\!\rangle, c)$, a functional

$$F: \left(\prod_{a:A} P a\right) \to \left(\prod_{b:B} Q b\right)$$

is $(T, \langle\!\langle - \rangle\!\rangle, c)$ -*representable* if there exists a morphism in **Cont**_{*T*}

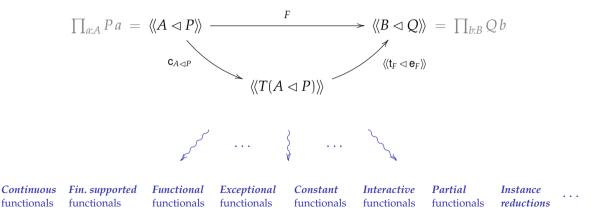
$$\mathbf{t}_{F} \lhd \mathbf{e}_{F} : (B \lhd Q) \rightarrow T(A \lhd P)$$

such that



Thm: Repr. functionals form a category. Full functor from reprs. to repr. funs.

What **other examples of representations** are out there?



Functional functionals

Consider:

• the *identity monad* $T \stackrel{\text{def}}{=} \mathsf{Id} : \mathbf{Cont} \to \mathbf{Cont}$

(i.e., $T(A \lhd P) \stackrel{\text{def}}{=} A \lhd P$)

• the *identity comodule* $\mathbf{c} \stackrel{\text{def}}{=} \mathbf{id} : A \lhd P \rightarrow A \lhd P$

Functional functionals

Consider:

the *identity monad* T ^{def} Id : Cont → Cont (i.e., T(A ⊲ P) ^{def} A ⊲ P)
the *identity comodule* c ^{def} id : A ⊲ P → A ⊲ P
A representation of F : (∏_{a:A} P a) → (∏_{b:B} Q b) is given by maps t_F : B → A and e_F : ∏{b:B} P (t_F b) → Q b such that F h b = e_F(h (t_F b))

► A *functional functional F* computes *F h b* by a *single* query to *h* (on inst. t_{*F*} *b*)

Functional (and exceptional) functionals

Consider:

- the *identity monad* $T \stackrel{\text{def}}{=} \mathsf{Id} : \mathsf{Cont} \to \mathsf{Cont}$ (i.e., $T(A \lhd P) \stackrel{\text{def}}{=} A \lhd P$) • the *identity comodule* $\mathsf{c} \stackrel{\text{def}}{=} \mathsf{id} : A \lhd P \to A \lhd P$
- ▶ A representation of $F : (\prod_{a:A} P a) \to (\prod_{b:B} Q b)$ is given by maps

$$\mathfrak{t}_F: B \to A$$
 and $\mathbf{e}_F: \prod_{\{b:B\}} P(\mathfrak{t}_F b) \to Q b$

such that $F h b = \mathbf{e}_F(h(\mathbf{t}_F b))$

► A *functional functional F* computes *F h b* by a *single* query to *h* (on inst. t_{*F*} *b*)

Note: *Exc. monad* = *exceptional functionals* = *single query* or *default answer*

Finitely supported functionals

Consider:

►
$$T(A \lhd P) \stackrel{\text{def}}{=} (\mathcal{P}_f A) \lhd (\lambda S. \prod_{a:S} P a)$$

► $\mathbf{c}_{A \lhd P} h S \stackrel{\text{def}}{=} h \upharpoonright_S$

($\mathcal{P}_f A$ is fin. powerset/-type of A)

Finitely supported functionals

Consider:

• A representation of $F : (\prod_{a:A} P a) \to (\prod_{b:B} Q b)$ is given by

 $\mathfrak{t}_F: B \to \mathcal{P}_f A$ and $\mathbf{e}_F: \prod_{\{b:B\}} (\prod_{a:\mathfrak{t}_F b} P a) \to Q b$

such that $Fhb = \mathbf{e}_F(h|_{\mathbf{t}_F b})$

▶ A *finitely supported fun*. *F* computes *Fhb* by a *finitely many* queries to *h*

▶ Note: The set of queries depends *only* on *b*, akin to truth-table reductions

Instance reductions

• Consider predicates $\phi : A \to \mathbf{Prop}$ and $\psi : B \to \mathbf{Prop}$, and implication

 $(\forall x \in A. \, \varphi \, x) \Rightarrow (\forall y \in B. \, \psi \, y)$

An *instance reduction*: $\forall y:B. \exists x:A. \phi x \Rightarrow \psi y$ (e.g., Zorn's lemma implies AC)

Instance reductions

• Consider predicates $\phi : A \to \mathbf{Prop}$ and $\psi : B \to \mathbf{Prop}$, and implication

 $(\forall x \in A. \, \varphi \, x) \Rightarrow (\forall y \in B. \, \psi \, y)$

An *instance reduction*: $\forall y:B. \exists x:A. \phi x \Rightarrow \psi y$ (e.g., Zorn's lemma implies AC)

• Restrict containers to *propositional containers* $A \triangleleft \phi$, where $\phi : A \rightarrow \mathbf{Prop}$

• Use the *inhabited powerset monad* \mathcal{P}_+ and the following comodule:

 $T(A \lhd | \phi) \stackrel{\text{def}}{=} (\mathcal{P}_{+}A) \lhd | (\lambda S. \exists x: S. \phi x) \qquad \mathsf{c}_{A \lhd | \phi} h S \stackrel{\text{def}}{=} \text{proof of } \exists x: S. \phi x$

Instance reductions

• Consider predicates $\phi : A \to \mathbf{Prop}$ and $\psi : B \to \mathbf{Prop}$, and implication

 $(\forall x \in A. \, \varphi \, x) \Rightarrow (\forall y \in B. \, \psi \, y)$

An *instance reduction*: $\forall y:B. \exists x:A. \phi x \Rightarrow \psi y$ (e.g., Zorn's lemma implies AC)

• Restrict containers to *propositional containers* $A \triangleleft \phi$, where $\phi : A \rightarrow \mathbf{Prop}$

• Use the *inhabited powerset monad* \mathcal{P}_+ and the following comodule:

 $T(A \lhd | \phi) \stackrel{\text{def}}{=} (\mathcal{P}_{+}A) \lhd | (\lambda S. \exists x: S. \phi x) \qquad \mathsf{c}_{A \lhd | \phi} h S \stackrel{\text{def}}{=} \text{proof of } \exists x: S. \phi x$

► Note: *Identity monad* on prop. containers = *functional instance reductions* $\exists (f: B \to A). \forall y: B. \varphi (f y) \Rightarrow \psi y$

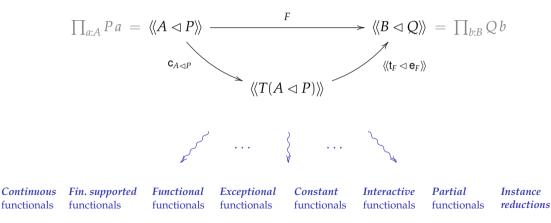
- ► Given some *existing monad M* on **Type**, we get a monad *T* on **Cont**(**U**) by
 - defining $T(A \triangleleft P) \stackrel{\text{def}}{=} (MA) \triangleleft P^{\star}$ (where $A : \mathbf{Type} \text{ and } P : A \rightarrow \mathbf{U}$)
 - ▶ when U carries a *weak Mendler-style M*-algebra structure given by (−)*

- ► Given some *existing monad M* on **Type**, we get a monad *T* on **Cont**(**U**) by
 - ▶ defining $T(A \triangleleft P) \stackrel{\text{def}}{=} (MA) \triangleleft P^{\star}$ (where $A : \text{Type} \text{ and } P : A \rightarrow U$)
 - ▶ when U carries a *weak Mendler-style M*-algebra structure given by (−)*
- ▶ Fun., exc., and fin. supp. functionals, and instance reductions are all examples

- ▶ Given some *existing monad M* on **Type**, we get a monad *T* on **Cont**(**U**) by
 - ▶ defining $T(A \triangleleft P) \stackrel{\text{def}}{=} (MA) \triangleleft P^{\star}$ (where $A : \text{Type} \text{ and } P : A \rightarrow U$)
 - ▶ when U carries a *weak Mendler-style M*-algebra structure given by (−)*
- ▶ Fun., exc., and fin. supp. functionals, and instance reductions are all examples
- Take the *trivial monad* $MA \stackrel{\text{def}}{=} \mathbb{1}$,
 - $P^* \star \stackrel{\text{def}}{=} \mathbb{1}$ captures *constant functionals*
 - $P^* \star \stackrel{\text{def}}{=} \prod_{a:A} Pa$ captures *self-representation* of functionals

- ► Given some *existing monad M* on **Type**, we get a monad *T* on **Cont**(**U**) by
 - defining $T(A \triangleleft P) \stackrel{\text{def}}{=} (MA) \triangleleft P^{\star}$ (where $A : \text{Type and } P : A \rightarrow U$)
 - ▶ when U carries a *weak Mendler-style M*-*algebra structure* given by (−)*
- ▶ Fun., exc., and fin. supp. functionals, and instance reductions are all examples
- Take the *trivial monad* $MA \stackrel{\text{def}}{=} 1$,
 - $P^* \star \stackrel{\text{def}}{=} \mathbb{1}$ captures *constant functionals*
 - ▶ $P^* \star \stackrel{\text{def}}{=} \prod_{a:A} Pa$ captures *self-representation* of functionals
- Take the *input-output monad* $M \stackrel{\text{def}}{=} \mathsf{IO}$,
 - ▶ $P^* c \stackrel{\text{def}}{=}$ "IO-traces through IO-comp. c" captures *interactive functionals*
 - dom & cod of *F*s change to $\langle\!\langle A \lhd P \rangle\!\rangle_R \stackrel{\text{def}}{=} \prod_{a:A} (R \Rightarrow P a \times R)$, where *R* is a *runner*

Thank you! Questions?



. . .