
Comodule Representations

of Second-Order Functionals

Danel Ahman (University of Tartu, Estonia)

Andrej Bauer (University of Ljubljana, Slovenia)

TYPES 2024

10–14 June 2024

Tree representations of continuous functionals

��

An abstract view of tree representations

��

Comodule representations

xx �� &&
· · · · · ·

Continuous
functionals

Fin. supported
functionals

Functional
functionals

Exceptional
functionals

Constant
functionals

Interactive
functionals

Partial
functionals

Instance
reductions · · ·

Tree representations of continuous functionals

Tree representations of continuous functionals

▶ Consider F : NN → N, say F(h) = h(2 · h(2)) + h(2)

▶ A tree representation of F:

2

0

0 1 2 · · ·

2 4

2 3 4 · · ·

· · ·

0

0 1 2 · · ·

1 2

0 1 2 · · ·

· · ·

(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

▶ Consider F : NN → N, say F(h) = h(2 · h(2)) + h(2)

▶ A tree representation of F:

2

0

0 1 2 · · ·

2 4

2 3 4 · · ·

· · ·

0

0 1 2 · · ·

1 2

0 1 2 · · ·

· · ·

(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

▶ Consider F : NN → N, say F(h) = h(2 · h(2)) + h(2)

▶ A tree representation of F:

h = (1, 5, 0, 3, 9, . . .)

F(h)

= h(2 · h(2)) + h(2)

2

0

0 1 2 · · ·

2 4

2 3 4 · · ·

· · ·

0

0 1 2 · · ·

1 2

0 1 2 · · ·

· · ·

(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

▶ Consider F : NN → N, say F(h) = h(2 · h(2)) + h(2)

▶ A tree representation of F:

h = (1, 5, 0, 3, 9, . . .)

F(h)

= h(2 · h(2)) + h(2)

= h(2 · 0) + 0

2

0

0 1 2 · · ·

2 4

2 3 4 · · ·

· · ·

0

0 1 2 · · ·

1 2

0 1 2 · · ·

· · ·

(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

▶ Consider F : NN → N, say F(h) = h(2 · h(2)) + h(2)

▶ A tree representation of F:

h = (1, 5, 0, 3, 9, . . .)

F(h)

= h(2 · h(2)) + h(2)

= h(2 · 0) + 0

= h(0) + 0

2

0

0 1 2 · · ·

2 4

2 3 4 · · ·

· · ·

0

0 1 2 · · ·

1 2

0 1 2 · · ·

· · ·

(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

▶ Consider F : NN → N, say F(h) = h(2 · h(2)) + h(2)

▶ A tree representation of F:

h = (1, 5, 0, 3, 9, . . .)

F(h)

= h(2 · h(2)) + h(2)

= h(2 · 0) + 0

= h(0) + 0

= 1 + 0

2

0

0 1 2 · · ·

2 4

2 3 4 · · ·

· · ·

0

0 1 2 · · ·

1 2

0 1 2 · · ·

· · ·

(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

▶ Consider F : NN → N, say F(h) = h(2 · h(2)) + h(2)

▶ A tree representation of F:

h = (1, 5, 0, 3, 9, . . .)

F(h)

= h(2 · h(2)) + h(2)

= h(2 · 0) + 0

= h(0) + 0

= 1 + 0

= 1

2

0

0 1 2 · · ·

2 4

2 3 4 · · ·

· · ·

0

0 1 2 · · ·

1 2

0 1 2 · · ·

· · ·

(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

▶ Consider F : NN → N, say F(h) = h(2 · h(2)) + h(2)

▶ Another tree representation of F:
▶ duplicated query on 2

▶ redundant queries

▶ generally non-unique

2

0

0 1 2 · · ·

2

7 2 42 · · ·

4

2 3 4 · · ·

· · ·

0

0 1 2 · · ·

1

0 1 2 · · ·

2

0 1 2 · · ·

· · ·

(a N-labelled, N-branching, N-leaved well-founded tree)

An abstract view of tree representations

An abstract view of tree representations: trees

▶ Given A : Type and P : A → Type

▶ Type of trees: inductively define Tree(A,P) by

leaf : Tree(A,P)

a : A ts : P a → Tree(A,P)

node(a, ts) : Tree(A,P)

(A-labelled, P-branching wf. trees with unlabelled leaves)

▶ Type of paths: given t : Tree(A,P), inductively define PathA,P(t) by

stop : PathA,P(leaf)

p : P a p⃗ : PathA,P(ts p)

step(p, p⃗) : PathA,P(node(a, ts))

(paths from root to leaves)

An abstract view of tree representations: trees and paths

▶ Given A : Type and P : A → Type

▶ Type of trees: inductively define Tree(A,P) by

leaf : Tree(A,P)

a : A ts : P a → Tree(A,P)

node(a, ts) : Tree(A,P)

(A-labelled, P-branching wf. trees with unlabelled leaves)

▶ Type of paths: given t : Tree(A,P), inductively define PathA,P(t) by

stop : PathA,P(leaf)

p : P a p⃗ : PathA,P(ts p)

step(p, p⃗) : PathA,P(node(a, ts))

(paths from root to leaves)

An abstract view of tree representations: computing a path

▶ Given

h :
∏

a:A P a and t : Tree(A,P)

we can recursively compute a path cA,P h t : PathA,P(t) by

cA,P h leaf def
= stop

cA,P h (node(a, t)) def
= step

(
h a, cA,P h (t (h a))

)
▶ This defines a map

cA,P :
(∏

a:A P a
) → ∏

t:Tree(A,P) PathA,P(t)

An abstract view of tree representations: tree representations

▶ A tree representation of a (continuous) functional

F :
(∏

a:A P a
) → (∏

b:B Q b
)

consists of

maps

tF : B → Tree(A,P) and eF :
∏

{b:B} PathA,P(tF b) → Q b

such that the following diagram commutes:∏
a:A P a

F
//

cA,P ((

∏
b:B Q b

∏
t:Tree(A,P) PathA,P(t)

λα. λb. eF (α (tF b))

==

(
F h b = eF (cA,P h (tF b))

)

An abstract view of tree representations: tree representations

▶ A tree representation of a (continuous) functional

F :
(∏

a:A P a
) → (∏

b:B Q b
)

consists of maps

tF : B → Tree(A,P) and eF :
∏

{b:B} PathA,P(tF b) → Q b

such that the following diagram commutes:∏
a:A P a

F
//

cA,P ((

∏
b:B Q b

∏
t:Tree(A,P) PathA,P(t)

λα. λb. eF (α (tF b))

==

(
F h b = eF (cA,P h (tF b))

)

Can this situation be captured even more abstractly?

∏
a:A P a

F
//

cA,P ((

∏
b:B Q b

∏
t:Tree(A,P) PathA,P(t)

λα. λb. eF (α (tF b))

==

Capturing tree representations more abstractly: containers

▶ A container A◁ P is given by:

▶ a type A of shapes, and

▶ a family P : A → Type of positions

▶ Examples:

▶ Lists: N◁ λn. {0, 1, . . . ,n − 1}

▶ Trees: Tree(A,P)◁ λt.PathA,P(t)

▶ A container morphism f ◁ g : (A◁ P) → (B◁Q) is given by

f : A → B and g :
∏

{a:A} Q(f a) → P a

▶ Containers and their morphisms form a category Cont

Capturing tree representations more abstractly: containers

▶ A container A◁ P is given by:

▶ a type A of shapes, and

▶ a family P : A → Type of positions

▶ Examples:

▶ Lists: N◁ λn. {0, 1, . . . ,n − 1}

▶ Trees: Tree(A,P)◁ λt.PathA,P(t)

▶ A container morphism f ◁ g : (A◁ P) → (B◁Q) is given by

f : A → B and g :
∏

{a:A} Q(f a) → P a

▶ Containers and their morphisms form a category Cont

Capturing tree representations more abstractly: containers

▶ A container A◁ P is given by:

▶ a type A of shapes, and

▶ a family P : A → Type of positions

▶ Examples:

▶ Lists: N◁ λn. {0, 1, . . . ,n − 1}

▶ Trees: Tree(A,P)◁ λt.PathA,P(t)

▶ A container morphism f ◁ g : (A◁ P) → (B◁Q) is given by

f : A → B and g :
∏

{a:A} Q(f a) → P a

▶ Containers and their morphisms form a category Cont

Capturing tree representations more abstractly: cointerp. of conts.

▶ Define the functor1 ⟨⟨−⟩⟩ : Contop → Type as

⟨⟨A◁ P⟩⟩ def
=

∏
a:A P a and ⟨⟨f ◁ g⟩⟩ def

= λα. λb. g (α (f b))

where f ◁ g : (B◁Q) → (A◁ P)

▶ A tree representation of F :
(∏

a:A P a
) → (∏

b:B Q b
)

may be thus rewritten as:

⟨⟨A◁ P⟩⟩
F

//

cA,P))

⟨⟨B◁Q⟩⟩

⟨⟨Tree(A,P)◁ λt.PathA,P(t)⟩⟩
⟨⟨tF ◁ eF⟩⟩

::

1It arises from the cointerpretation of containers [A., Uustalu ’14], given by X 7→ ∏
a:A (P a × X)

Capturing tree representations more abstractly: cointerp. of conts.

▶ Define the functor1 ⟨⟨−⟩⟩ : Contop → Type as

⟨⟨A◁ P⟩⟩ def
=

∏
a:A P a and ⟨⟨f ◁ g⟩⟩ def

= λα. λb. g (α (f b))

where f ◁ g : (B◁Q) → (A◁ P)

▶ A tree representation of F :
(∏

a:A P a
) → (∏

b:B Q b
)

may be thus rewritten as:

⟨⟨A◁ P⟩⟩
F

//

cA,P))

⟨⟨B◁Q⟩⟩

⟨⟨Tree(A,P)◁ λt.PathA,P(t)⟩⟩
⟨⟨tF ◁ eF⟩⟩

::

1It arises from the cointerpretation of containers [A., Uustalu ’14], given by X 7→ ∏
a:A (P a × X)

Capturing tree representations more abstractly: tree monad

▶ The tree monad (T , η, µ) on containers:

T (A◁ P) def
= Tree(A,P)◁ λt.PathA,P(t),

ηA◁P
def
=

(
λa.node(a, λp. leaf)

)
◁
(
λ{a}. λ(step(p, stop)). p

)
µA◁P

def
= · · ·

▶ More abstractly: T (A◁ P) ∼= lfp(X ◁ Y). Idc +c (A◁ P) ◦c (X ◁ Y)

▶ A tree representation of F may be thus further rewritten as:

⟨⟨A◁ P⟩⟩
F

//

cA,P
))

⟨⟨B◁Q⟩⟩

⟨⟨T (A◁ P)⟩⟩
⟨⟨tF ◁ eF⟩⟩

AA

Capturing tree representations more abstractly: tree monad

▶ The tree monad (T , η, µ) on containers:

T (A◁ P) def
= Tree(A,P)◁ λt.PathA,P(t),

ηA◁P
def
=

(
λa.node(a, λp. leaf)

)
◁
(
λ{a}. λ(step(p, stop)). p

)
µA◁P

def
= · · ·

▶ More abstractly: T (A◁ P) ∼= lfp(X ◁ Y). Idc +c (A◁ P) ◦c (X ◁ Y)

▶ A tree representation of F may be thus further rewritten as:

⟨⟨A◁ P⟩⟩
F

//

cA,P
))

⟨⟨B◁Q⟩⟩

⟨⟨T (A◁ P)⟩⟩
⟨⟨tF ◁ eF⟩⟩

AA

Capturing tree representations more abstractly: comodule

▶ The tree monad (T , η, µ) on containers:

T (A◁ P) def
= Tree(A,P)◁ λt.PathA,P(t),

ηA◁P
def
=

(
λa.node(a, λp. leaf)

)
◁
(
λ{a}. λ(step(p, stop)). p

)
µA◁P

def
= · · ·

▶ More abstractly: T (A◁ P) ∼= lfp(X ◁ Y). Idc +c (A◁ P) ◦c (X ◁ Y)

▶ A tree representation of F may be thus further rewritten as:

⟨⟨A◁ P⟩⟩
F

//

a right T -comodule:

▶ c : ⟨⟨−⟩⟩ → ⟨⟨−⟩⟩ ◦ T
▶ unit & assoc. laws

⇝ cA◁P
))

⟨⟨B◁Q⟩⟩

⟨⟨T (A◁ P)⟩⟩
⟨⟨tF ◁ eF⟩⟩

AA

Capturing tree representations more abstractly: comodule reprs.

▶ Given a monad (T, η, µ) on Cont and a right T-comodule (⟨⟨−⟩⟩, c), a functional

F :
(∏

a:A P a
) → (∏

b:B Q b
)

is
(
T, ⟨⟨−⟩⟩, c

)
-representable if there exists a morphism in ContT

tF ◁ eF : (B◁Q) → T(A◁ P)

such that

⟨⟨A◁ P⟩⟩
F

//

cA◁P
))

⟨⟨B◁Q⟩⟩

⟨⟨T(A◁ P)⟩⟩
⟨⟨tF ◁ eF⟩⟩

AA

▶ Thm: Repr. functionals form a category. Full functor from reprs. to repr. funs.

Capturing tree representations more abstractly: comodule reprs.

▶ Given a monad (T, η, µ) on Cont and a right T-comodule (⟨⟨−⟩⟩, c), a functional

F :
(∏

a:A P a
) → (∏

b:B Q b
)

is
(
T, ⟨⟨−⟩⟩, c

)
-representable if there exists a morphism in ContT

tF ◁ eF : (B◁Q) → T(A◁ P)

such that

⟨⟨A◁ P⟩⟩
F

//

cA◁P
))

⟨⟨B◁Q⟩⟩

⟨⟨T(A◁ P)⟩⟩
⟨⟨tF ◁ eF⟩⟩

AA

▶ Thm: Repr. functionals form a category. Full functor from reprs. to repr. funs.

What other examples of representations are out there?

∏
a:A P a = ⟨⟨A◁ P⟩⟩

F
//

cA◁P
))

⟨⟨B◁Q⟩⟩ =
∏

b:B Q b

⟨⟨T(A◁ P)⟩⟩
⟨⟨tF ◁ eF⟩⟩

AA

�� �� ��
· · · · · ·

Continuous
functionals

Fin. supported
functionals

Functional
functionals

Exceptional
functionals

Constant
functionals

Interactive
functionals

Partial
functionals

Instance
reductions · · ·

Functional functionals

▶ Consider:

▶ the identity monad T def
= Id : Cont → Cont (i.e., T(A◁ P) def

= A◁ P)

▶ the identity comodule c def
= id : A◁ P → A◁ P

▶ A representation of F :
(∏

a:A P a
) → (∏

b:B Q b
)

is given by maps

tF : B → A and eF :
∏

{b:B} P (tF b) → Q b

such that F h b = eF(h (tF b))

▶ A functional functional F computes F h b by a single query to h (on inst. tF b)

▶ Note: Exc. monad = exceptional functionals = single query or default answer

Functional functionals

▶ Consider:

▶ the identity monad T def
= Id : Cont → Cont (i.e., T(A◁ P) def

= A◁ P)

▶ the identity comodule c def
= id : A◁ P → A◁ P

▶ A representation of F :
(∏

a:A P a
) → (∏

b:B Q b
)

is given by maps

tF : B → A and eF :
∏

{b:B} P (tF b) → Q b

such that F h b = eF(h (tF b))

▶ A functional functional F computes F h b by a single query to h (on inst. tF b)

▶ Note: Exc. monad = exceptional functionals = single query or default answer

Functional (and exceptional) functionals

▶ Consider:

▶ the identity monad T def
= Id : Cont → Cont (i.e., T(A◁ P) def

= A◁ P)

▶ the identity comodule c def
= id : A◁ P → A◁ P

▶ A representation of F :
(∏

a:A P a
) → (∏

b:B Q b
)

is given by maps

tF : B → A and eF :
∏

{b:B} P (tF b) → Q b

such that F h b = eF(h (tF b))

▶ A functional functional F computes F h b by a single query to h (on inst. tF b)

▶ Note: Exc. monad = exceptional functionals = single query or default answer

Finitely supported functionals

▶ Consider:

▶ T(A◁ P) def
= (Pf A)◁ (λS.

∏
a:S P a) (Pf A is fin. powerset/-type of A)

▶ cA◁P h S def
= h↾S

▶ A representation of F :
(∏

a:A P a
) → (∏

b:B Q b
)

is given by

tF : B → Pf A and eF :
∏

{b:B} (
∏

a:tF b P a) → Q b

such that F h b = eF (h↾tF b)

▶ A finitely supported fun. F computes F h b by a finitely many queries to h

▶ Note: The set of queries depends only on b, akin to truth-table reductions

Finitely supported functionals

▶ Consider:

▶ T(A◁ P) def
= (Pf A)◁ (λS.

∏
a:S P a) (Pf A is fin. powerset/-type of A)

▶ cA◁P h S def
= h↾S

▶ A representation of F :
(∏

a:A P a
) → (∏

b:B Q b
)

is given by

tF : B → Pf A and eF :
∏

{b:B} (
∏

a:tF b P a) → Q b

such that F h b = eF (h↾tF b)

▶ A finitely supported fun. F computes F h b by a finitely many queries to h

▶ Note: The set of queries depends only on b, akin to truth-table reductions

Instance reductions

▶ Consider predicates ϕ : A → Prop and ψ : B → Prop, and implication

(∀x ∈ A. ϕ x) ⇒ (∀y ∈ B. ψ y)

▶ An instance reduction: ∀y:B. ∃x:A. ϕ x ⇒ ψ y (e.g., Zorn’s lemma implies AC)

▶ Restrict containers to propositional containers A◁| ϕ, where ϕ : A → Prop

▶ Use the inhabited powerset monad P+ and the following comodule:

T(A◁| ϕ)
def
= (P+ A)◁| (λS. ∃x:S. ϕ x) cA◁|ϕ h S def

= proof of ∃x:S. ϕ x

▶ Note: Identity monad on prop. containers = functional instance reductions

∃(f : B → A). ∀y:B. ϕ (f y) ⇒ ψ y

Instance reductions

▶ Consider predicates ϕ : A → Prop and ψ : B → Prop, and implication

(∀x ∈ A. ϕ x) ⇒ (∀y ∈ B. ψ y)

▶ An instance reduction: ∀y:B. ∃x:A. ϕ x ⇒ ψ y (e.g., Zorn’s lemma implies AC)

▶ Restrict containers to propositional containers A◁| ϕ, where ϕ : A → Prop

▶ Use the inhabited powerset monad P+ and the following comodule:

T(A◁| ϕ)
def
= (P+ A)◁| (λS. ∃x:S. ϕ x) cA◁|ϕ h S def

= proof of ∃x:S. ϕ x

▶ Note: Identity monad on prop. containers = functional instance reductions

∃(f : B → A). ∀y:B. ϕ (f y) ⇒ ψ y

Instance reductions

▶ Consider predicates ϕ : A → Prop and ψ : B → Prop, and implication

(∀x ∈ A. ϕ x) ⇒ (∀y ∈ B. ψ y)

▶ An instance reduction: ∀y:B. ∃x:A. ϕ x ⇒ ψ y (e.g., Zorn’s lemma implies AC)

▶ Restrict containers to propositional containers A◁| ϕ, where ϕ : A → Prop

▶ Use the inhabited powerset monad P+ and the following comodule:

T(A◁| ϕ)
def
= (P+ A)◁| (λS. ∃x:S. ϕ x) cA◁|ϕ h S def

= proof of ∃x:S. ϕ x

▶ Note: Identity monad on prop. containers = functional instance reductions

∃(f : B → A). ∀y:B. ϕ (f y) ⇒ ψ y

More examples from monads on shapes (from monads on Type)

▶ Given some existing monad M on Type, we get a monad T on Cont(U) by

▶ defining T(A◁ P) def
= (MA)◁ P⋆ (where A : Type and P : A → U)

▶ when U carries a weak Mendler-style M-algebra structure given by (−)⋆

▶ Fun., exc., and fin. supp. functionals, and instance reductions are all examples

▶ Take the trivial monad MA def
= 1,

▶ P⋆ ⋆
def
= 1 captures constant functionals

▶ P⋆ ⋆
def
=

∏
a:A P a captures self-representation of functionals

▶ Take the input-output monad M def
= IO,

▶ P⋆ c
def
= "IO–traces through IO-comp. c" captures interactive functionals

▶ dom & cod of Fs change to ⟨⟨A◁ P⟩⟩R
def
=

∏
a:A (R ⇒ P a × R), where R is a runner

More examples from monads on shapes (from monads on Type)

▶ Given some existing monad M on Type, we get a monad T on Cont(U) by

▶ defining T(A◁ P) def
= (MA)◁ P⋆ (where A : Type and P : A → U)

▶ when U carries a weak Mendler-style M-algebra structure given by (−)⋆

▶ Fun., exc., and fin. supp. functionals, and instance reductions are all examples

▶ Take the trivial monad MA def
= 1,

▶ P⋆ ⋆
def
= 1 captures constant functionals

▶ P⋆ ⋆
def
=

∏
a:A P a captures self-representation of functionals

▶ Take the input-output monad M def
= IO,

▶ P⋆ c
def
= "IO–traces through IO-comp. c" captures interactive functionals

▶ dom & cod of Fs change to ⟨⟨A◁ P⟩⟩R
def
=

∏
a:A (R ⇒ P a × R), where R is a runner

More examples from monads on shapes (from monads on Type)

▶ Given some existing monad M on Type, we get a monad T on Cont(U) by

▶ defining T(A◁ P) def
= (MA)◁ P⋆ (where A : Type and P : A → U)

▶ when U carries a weak Mendler-style M-algebra structure given by (−)⋆

▶ Fun., exc., and fin. supp. functionals, and instance reductions are all examples

▶ Take the trivial monad MA def
= 1,

▶ P⋆ ⋆
def
= 1 captures constant functionals

▶ P⋆ ⋆
def
=

∏
a:A P a captures self-representation of functionals

▶ Take the input-output monad M def
= IO,

▶ P⋆ c
def
= "IO–traces through IO-comp. c" captures interactive functionals

▶ dom & cod of Fs change to ⟨⟨A◁ P⟩⟩R
def
=

∏
a:A (R ⇒ P a × R), where R is a runner

More examples from monads on shapes (from monads on Type)

▶ Given some existing monad M on Type, we get a monad T on Cont(U) by

▶ defining T(A◁ P) def
= (MA)◁ P⋆ (where A : Type and P : A → U)

▶ when U carries a weak Mendler-style M-algebra structure given by (−)⋆

▶ Fun., exc., and fin. supp. functionals, and instance reductions are all examples

▶ Take the trivial monad MA def
= 1,

▶ P⋆ ⋆
def
= 1 captures constant functionals

▶ P⋆ ⋆
def
=

∏
a:A P a captures self-representation of functionals

▶ Take the input-output monad M def
= IO,

▶ P⋆ c
def
= "IO–traces through IO-comp. c" captures interactive functionals

▶ dom & cod of Fs change to ⟨⟨A◁ P⟩⟩R
def
=

∏
a:A (R ⇒ P a × R), where R is a runner

Thank you! Questions?

∏
a:A P a = ⟨⟨A◁ P⟩⟩

F
//

cA◁P
))

⟨⟨B◁Q⟩⟩ =
∏

b:B Q b

⟨⟨T(A◁ P)⟩⟩
⟨⟨tF ◁ eF⟩⟩

AA

�� �� ��
· · · · · ·

Continuous
functionals

Fin. supported
functionals

Functional
functionals

Exceptional
functionals

Constant
functionals

Interactive
functionals

Partial
functionals

Instance
reductions · · ·

