Comodule Representations

of Second-Order Functionals

Danel Ahman (University of Tartu, Estonia)

Andrej Bauer (University of Ljubljana, Slovenia)

TYPES 2024

10-14 June 2024

Tree representations of continuous functionals

é

An abstract view of tree representations

é

Comodule representations

Continuous Fin. supported Functional Exceptional Constant Interactive Partial Instance
functionals functionals functionals functionals functionals ~ functionals functionals reductions

Tree representations of continuous functionals

Tree representations of continuous functionals

» Consider F: NN — N, say F(h) = h(2 - h(2)) + h(2)

Tree representations of continuous functionals

» Consider F: NN — N, say F(h) = h(2 - h(2)) + h(2)

» A tree representation of F:

// \
/ / \\
// N // N
O/ 1/ [N A RN

2 . 2 3 4
(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

» Consider F: NN — N, say F(h) = h(2 - h(2)) + h(2)

» A tree representation of F:

h= (1,5,0,3,9,...) // \
F(h)‘ / / \\
AN AN
TN 2N

2 e 2 3 4
(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

» Consider F: NN — N, say F(h) = h(2 - h(2)) + h(2)

» A tree representation of F:

h= (1,5,0,3,9,...) // \
i . / / \\
0/1/\2\... 0/1/\2\'"
SLUN U

2 e 2 3 4
(a N-labelled, N-branching, N-leaved well-founded tree)

[
= =
N N
e =
+ =
(e)
+
=

Tree representations of continuous functionals

» Consider F: NN — N, say F(h) = h(2 - h(2)) + h(2)

» A tree representation of F:

h= (1,5,0,3,9,...) // \
F(h)

= h(2-h(2)) +h(2) / / \ \
2‘:)')0—’_0 0/1/\2\~~- 0/1/\2\.“
SN YAV TN

2 e 2 3 4
(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

» Consider F: NN — N, say F(h) = h(2 - h(2)) + h(2)

» A tree representation of F:

h= (1,5,0,3,9,...) // \

(h)
= h(2-h2))+h() / / \\
o i AN

= h(0) +

1v0 0/1/ NN VANEEERN

2 e 2 3 4
(a N-labelled, N-branching, N-leaved well-founded tree)

™

Tree representations of continuous functionals

» Consider F: NN — N, say F(h) = h(2 - h(2)) + h(2)

» A tree representation of F:

h= (1,5,0,3,9,...) // \

(h)
= h(2-h2))+h() / / \\
o i AN

™

— h(0) +
R VAV VAVERERAN
_1 0 1 2 .. 2 3 4 ..

(a N-labelled, N-branching, N-leaved well-founded tree)

Tree representations of continuous functionals

» Consider F: NN — N, say F(h) = h(2 - h(2)) + h(2)
» Another tree representation of F:

» duplicated query on 2

» redundant queries / / \

» generally non-unique 0 1 5 .
0 2/ \\4
SN N SN
JIAVN /YN /N
o1 2 ... 7 2 42 ... 2 3 4 ...

(a N-labelled, N-branching, N-leaved well-founded tree)

An abstract view of tree representations

An abstract view of tree representations: trees

» Given A : Type and P: A — Type

» Type of trees: inductively define Tree(A, P) by

a:A ts: Pa — Tree(A, P)
leaf : Tree(A, P) node(a, ts) : Tree(A, P)

(A-labelled, P-branching wf. trees with unlabelled leaves)

An abstract view of tree representations: trees and paths

» Given A : Type and P: A — Type

» Type of trees: inductively define Tree(A, P) by

a:A ts: Pa — Tree(A, P)
leaf : Tree(A, P) node(a, ts) : Tree(A, P)

(A-labelled, P-branching wf. trees with unlabelled leaves)

» Type of paths: given t : Tree(A, P), inductively define Patha p(t) by

p:Pa p:Pathyp(tsp)

stop : Path, p(leaf) step(p, p) : Patha p(node(a, ts))

(paths from root to leaves)

An abstract view of tree representations: computing a path
> Given
h:1[,aPa and t:Tree(A,P)
we can recursively compute a path capht : Patha p(t) by

ca,p hleaf = stop
caph(node(a,t)) = step(ha,caph(t(ha)))

» This defines a map

Cap: (Ha:A p a) - Ht;Tree(A,P) Patha,p(t)

An abstract view of tree representations: tree representations

> A tree representation of a (continuous) functional

F:(TlsaPa) — (IT,5Q0)

consists of

An abstract view of tree representations: tree representations

> A tree representation of a (continuous) functional

F:(TlsaPa) — (IT,5Q0)

consists of maps

tr: B — Tree(A,P) and er: H{b:B} PathA‘p(tF b) — Qb

such that the following diagram commutes:

F

Ha:A Pa Hb:B Q b

CAN %: Ab.ep (o (tr b))

Ht:Tree(A,P) PathA»P(t)

(Fhb=er(caph(trb)))

Can this situation be captured even more abstractly?

[loaPa [1s Qb

cA,p\x %Ab. er (o (tr b))

Ht:Tree(A,P} PathA»P (t)

Capturing tree representations more abstractly: containers

» A container A < P is given by:

> atype A of shapes, and
» afamily P: A — Type of positions

> Examples:

» Lists: N <An.{0,1,...,n—1}
> Trees: Tree(A, P) <t At. Path p(t)

Capturing tree representations more abstractly: containers

» A container A < P is given by:

> atype A of shapes, and
» afamily P: A — Type of positions

> Examples:

» Lists: N <An.{0,1,...,n—1}
> Trees: Tree(A, P) <t At. Path p(t)

» A container morphismf < g: (A <P) — (B < Q) is given by

ftA—-B and g:[[,4Q(fa) = Pa

Capturing tree representations more abstractly: containers

» A container A < P is given by:

> atype A of shapes, and
» afamily P: A — Type of positions

> Examples:

» Lists: N <An.{0,1,...,n—1}
> Trees: Tree(A, P) <t At. Path p(t)

» A container morphismf < g: (A <P) — (B < Q) is given by

ftA—-B and g:[[,4Q(fa) = Pa

» Containers and their morphisms form a category Cont

Capturing tree representations more abstractly: cointerp. of conts.
> Define the functor' ((—)) : Cont°? — Type as

(A<P) €[.4Pa and (f<g) = Aa.Ab.g(c(fD))

wheref <¢g: (B<Q) — (A< P)

Tt arises from the cointerpretation of containers [A., Uustalu '14], givenby X — [, (Pa x X)

Capturing tree representations more abstractly: cointerp. of conts.

> Define the functor' ((—)) : Cont°? — Type as
(A<P) ET[.4Pa and (f<g) = A.Ab.g (e (fD))
wheref <¢g: (B<Q) — (A< P)

> A tree representation of F: (],4 Pa) — ([],z Qb) may be thus rewritten as:

F

(A<P) (B<Q)

‘m /M er)

((Tree(A, P) <t At. Paths p(t)))

't arises from the cointerpretation of containers [A., Uustalu '14], given by X [] ., (Pa x X)

Capturing tree representations more abstractly: tree monad

» The tree monad (7,1, 1) on containers:

T(A < P) & Tree(A, P) <1 At.Path p(t),

def

Na<p = (Aa.node(a, Ap.leaf)) < (Ma}. A(step(p, stop)). p)

def
Ma<p = -

» More abstractly: T(A<P) = lfp(X < Y).1d“+ (A< P)o® (XQY)

Capturing tree representations more abstractly: tree monad

» The tree monad (7,1, 1) on containers:

T(A < P) = Tree(A,P) < At. Pathy p(t),

def

Na<p = (Aa.node(a, Ap.leaf)) < (Ma}. A(step(p, stop)). p)

def
Ma<p = -

» More abstractly: T(A<P) = lfp(X < Y).1d“+ (A< P)o® (XQY)
> A tree representation of F may be thus further rewritten as:

F

(A< P) (B<Q)

CA,P\\ %‘F <er)

(T(A<P))

Capturing tree representations more abstractly: comodule

» The tree monad (7,1, 1) on containers:

T(A < P) & Tree(A, P) <1 At.Path p(t),

def

Na<p = (Aa.node(a, Ap.leaf)) < (Ma}. A(step(p, stop)). p)

def
Ma<p = -

» More abstractly: T(A<P) = lfp(X < Y).1d“+ (A< P)o® (XQY)
> A tree representation of F may be thus further rewritten as:

F
(A <Py {(B<Q)

a right T-comodule:
>C: (=) 2 (=NoT ~> CA<1P\\ /1p<eF
T(A < P))

» unit & assoc. laws

Capturing tree representations more abstractly: comodule reprs.

» Given a monad (T,n,) on Cont and a right T-comodule ({(—)),), a functional
E: (Ha:Apa) - (Hb:B Qb)
is (T, {(—)), c)-representable if there exists a morphism in Contr
tr<er:(B<Q)—=TA<P)

such that
(A<P) (B<Q)

CA<1P\\ %tlz < er))

(T(A<P))

Capturing tree representations more abstractly: comodule reprs.

» Given a monad (T,n,) on Cont and a right T-comodule ({(—)),), a functional

F: (Ha:A Pﬂ) - (Hb:B Qb)

is (T, {(—)), c)-representable if there exists a morphism in Contr

tr<er:(B<Q)—=TA<P)

such that

(A <P) (B<Q)

Caqp (tr < ef)

(T(A<P))

» Thm: Repr. functionals form a category. Full functor from reprs. to repr. funs.

What other examples of representations are out there?

F

Ha:A Pa = A < P>> <<B < Q H[JZB Qb

PR N

Continuous Fin. supported Functional Exceptional Constant Interactive Partial Instance
functionals functionals functionals functionals functionals functionals functionals reductions

Functional functionals

» Consider:

def

> the identity monad T £ 1d : Cont — Cont (e, T(A<P) £ A<P)

» the identity comodule c Lid: AP - AP

Functional functionals

» Consider:

> the identity monad T £ 1d : Cont — Cont (e, TA<P) € A< P)
» the identity comodule c Lid: AP - AP
> A representation of F : ([, Pa) — ([],5Qb) is given by maps
tr:B— A and epin{b:B}P(tpb)%Qb
such that Fhb = ep(h (1 b))

» A functional functional F computes F hb by a single query to h (on inst. iy b)

Functional (and exceptional) functionals

» Consider:

> the identity monad T £ 1d : Cont — Cont (e, TA<P) € A< P)
» the identity comodule c Lid: AP - AP
> A representation of F : ([, Pa) — ([],5Qb) is given by maps
tr:B— A and epin{b:B}P(tpb)%Qb
such that Fhb = ep(h (1 b))

» A functional functional F computes F hb by a single query to h (on inst. iy b)

» Note: Exc. monad = exceptional functionals = single query or default answer

Finitely supported functionals

» Consider:

> T(A<P) € (PrA) < (AS. .5 Pa) (Pr A is fin. powerset/-type of A)

> CaqphS & R

Finitely supported functionals

» Consider:

> T(A<P) o (PrA) < (AS.T[,sPa) (Pr Ais fin. powerset/-type of A)

> CaqphS & R

> A representation of F : ([T,4 Pa) — ([,5 QD) is given by
tr:B—PrA and ep:[[yp ([1 Pa) = Qb
such that Fhb = ef (h[,)
» A finitely supported fun. F computes F h b by a finitely many queries to h

» Note: The set of queries depends only on b, akin to truth-table reductions

Instance reductions

» Consider predicates ¢ : A — Prop and 1 : B — Prop, and implication
(Vx e A.dx) = (Vy € B.yy)

» An instance reduction: Vy:B. Ix:A.dx = Yy

Instance reductions

» Consider predicates ¢ : A — Prop and 1 : B — Prop, and implication
(Vx e A.dx) = (Vy € B.yy)
» An instance reduction: Vy:B. Ix:A.ox = Py
» Restrict containers to propositional containers A < ¢, where ¢ : A — Prop

» Use the inhabited powerset monad P, and the following comodule:

def

T(A<id) = (P A) <l (AS. 3x:S. b x) CaagphS = proof of Ix:S. ¢ x

Instance reductions

» Consider predicates ¢ : A — Prop and 1 : B — Prop, and implication
(Vx e A.dx) = (Vy € B.yy)
» An instance reduction: Vy:B. Ix:A.ox = Py
» Restrict containers to propositional containers A < ¢, where ¢ : A — Prop

» Use the inhabited powerset monad P, and the following comodule:

def

T(A<ld) = (P A) < (AS.3x:S. b x) CaaiphS = proof of 3x:S. d x
» Note: Identity monad on prop. containers = functional instance reductions

A(f:B—A).YyB. ¢ (fy) = by

More examples from monads on shapes (from monads on Type)

» Given some existing monad M on Type, we get a monad T on Cont(U) by

def

» defining T(A < P) = (MA) < P* (where A : Typeand P: A — U)

» when U carries a weak Mendler-style M-algebra structure given by (—)*

More examples from monads on shapes (from monads on Type)

» Given some existing monad M on Type, we get a monad T on Cont(U) by

def

» defining T(A < P) = (MA) < P* (where A : Typeand P: A — U)

» when U carries a weak Mendler-style M-algebra structure given by (—)*

» Fun., exc., and fin. supp. functionals, and instance reductions are all examples

More examples from monads on shapes (from monads on Type)

» Given some existing monad M on Type, we get a monad T on Cont(U) by

def

» defining T(A < P) = (MA) < P* (where A : Typeand P: A — U)

» when U carries a weak Mendler-style M-algebra structure given by (—)*

» Fun., exc., and fin. supp. functionals, and instance reductions are all examples
def

» Take the trivial monad MA = 1,

> Py g captures constant functionals

> pry [1,.4 P a captures self-representation of functionals

More examples from monads on shapes (from monads on Type)

» Given some existing monad M on Type, we get a monad T on Cont(U) by

def

» defining T(A < P) = (MA) < P* (where A : Typeand P: A — U)

» when U carries a weak Mendler-style M-algebra structure given by (—)*

» Fun., exc., and fin. supp. functionals, and instance reductions are all examples

def

» Take the trivial monad MA = 1,

> Py g captures constant functionals

L [1,.4 P a captures self-representation of functionals

> Take the input-output monad M £ 10,

> P*c & "|O-traces through |O-comp. ¢" captures interactive functionals

def

» dom & cod of Fs change to (A <P)r = [],., (R = Pa x R), where R is a runner

Thank you! Questions?

[[oaPa = (A<P) (B<Q) = [1zQ0

cml\ /tp <er)

Continuous Fin. supported Functional Exceptional Constant Interactive Partial Instance
functionals functionals functionals functionals functionals functionals functionals reductions

.

